top of page

Историческая справка

Первой по времени геометрией, отличной от евклидовой, была сферическая геометрия, или сферика, как её называли древние.

Сферика возникла позже, чем евклидова геометрия плоскости и пространства. Основными стимулами для возникновения геометрии плоскости и пространства была необходимость измерения площадей полей и других плоских фигур и вместимости сосудов и амбаров различной формы, т.е. объёмов различных тел. Основным стимулом для возникновения сферики было изучение звёздного неба.

Наблюдение небесных светил производилось ещё в Древнем Египте и Вавилоне, прежде всего с целью установления календаря. Мы

обязаны египтянам разделением суток на 24 часа. Вклад вавилонян в развитии астрономии был более значителен: наблюдения затмений и звёзд первых веков «эры Набонасара», начавшейся в VIII в. до н. э. Древние греки познакомились с вавилонской астрономией по крайней мере в IV в. до н. э., когда первоначальные названия планет были заменены названиями планет по вавилонскому образцу, латинскими переводами которых являются общепринятые нами названия. Астрономия, изложенная в «Альмагесте» Птолемея, была результатом продолжавшегося несколько веков развития науки, впитавшей традиции как вавилонских астрономов, так и греческих геометров.

Сферика Автолика. Первым античным математическим сочинением, сохранившимся до наших дней, является книга «О

движущейся сфере» Автолика, жившего в конце IV в. до н. э. Предметом исследования этой книги является небесная сфера, рассматриваемая, однако, в весьма абстрактном виде. Книга Автолика состоит из 12 предложений. Определения относятся к равномерному движению. В предложении 1 доказывается, что если сфера равномерно движется вокруг оси, то все её точки, не лежащие на оси, описывают параллельные круги, имеющие те же полюсы, что и сфера, а плоскости этих кругов перпендикулярны оси сферы. Под кругами здесь понимаются плоские фигуры, ограниченные окружностями, а под выражением «точка описывает круг» понимается то, что точка пробегает окружность круга.

Доказательства большинства предложений этого трактата основаны на применении движения: предполагается, что утверждение

предложения неверно, производится поворот сферы и обнаруживается, что предложение противоречит тому, что получилось в результате поворота сферы.

Сферика Феодосия. Первое дошедшее до нас систематическое изложение сферической геометрии содержится в «Сферике»

Феодосия, жившего во II-I вв. до н. э. «Сферика» Феодосия состоит из трёх книг, в первой из которых шесть определений и 23 предложения, во второй – одно определение и 23 предложения, в третьей – 14 предложений.

Определение Феодосия: «Сфера есть телесная фигура, содержащая внутри одной поверхности, такая, что все прямые, падающие на

неё из одной точки внутри фигуры, равны между собой».

Большинство предложений «Сферики» Феодосия – стереометрические теоремы и задачи на построение. Когда Феодосий говорит о

пересечении кругов на сфере под некоторым углом или о параллельности этих кругов, он имеет в виду пересечение под данным углом или параллельность их плоскостей; когда он говорит о рассечении кругами на сфере друг друга пополам, он имеет в виду рассечение пополам плоских фигур.

Наряду со стереометрическими предложениями, сформулированные в терминах геометрии на поверхности сферы. Например,

предложения 20-21 из I книги – задача о построении большого круга на сфере, проходящего через две точки ее поверхности, и задача о построении полюса данного круга на сфере.

Сферика Менелая. Значительно более развитую сферическую геометрию можно найти в трактате «О сфере» Менелая, жившего в

конце I в. н. э. Сочинение Менелая сохранилось только в арабском переводе в нескольких обработках, лучшими из которых являются обработки Абу Насра ибн Ирака и Насир ад-Дина ат-Туси. «Сферика Менелая состоит из трёх книг, содержащих соответственно 39, 21 и 25 предложений. Во введении к книге I Менелай даёт определение сферического треугольника («трёхсторонней фигуры»), т.е. части поверхности, ограниченной тремя дугами больших кругов, меньшими полукругами, и углов сферического треугольника. Если большинство предложений «Сферики» Феодосия были стереометрическими, сочинение Менелая посвящено геометрии на поверхности сферы, трактуемой по аналогии с планиметрией Евклида. Например, предложение 1 книги I – задача о проведении дуги большого круга под данным углом к данной дуге большого круга; предложения 2 и 3 книги I – теорема о равенстве углов при основании равнобедренного сферического треугольника и обратная ей. Из предложений не совпадающих с предложениями планиметрии, отметим предложения 10 и 11, из которых вытекает, что сумма углов сферического треугольника больше двух прямых углов.

«Предложение десятое. Если две стороны трёхсторонней фигуры вместе меньше полукруга, то внешний угол, примыкающий к

одной из этих сторон, больше того противолежащего ему внутреннего угла, который является одним из двух углов, прилежащих к оставшейся стороне; если две стороны вместе больше полукруга, то внешний угол меньше противолежащего ему внутреннего угла; а если две стороны вместе равны полукругу, то внешний угол равен противоположному ему внутреннему».

«Предложение одиннадцатое. Внешний угол всякой трёхсторонней фигуры меньше обоих противолежащих ему внутренних углов.

Теоремы Менелая: Особую роль в истории сферической геометрии и тригонометрии сыграло предложение 1 книги III сочинения

Менелая, в которой доказывается как плоский, так и сферический случай теоремы, называемой в настоящее время «теоремой Менелая» или «теоремой о полном четырёхстороннике». Полным четырёхсторонником называется плоский или сферический четырёхугольник, пары противоположных сторон которого продолжены до пересечения.

Сферическая теорема Менелая изложена у Птолемея следующим образом: «Опишем на поверхности сферы дуги больших кругов

так, чтобы проведённые к двум начерченным дугам АВ и АС две другие дуги ВЕ и СD пересекались в точке G; пусть каждая из этих дуг меньше полуокружности; то же будем предполагать и для всех таких построений. Я утверждаю, что отношение прямой под удвоенной дугой СЕ к прямой под удвоенной ЕА составлено из отношения прямой под удвоенной CG к прямой под удвоенной GD и отношения прямой под удвоенной DB к прямой под удвоенной ВА.»

Фламандский математик Альберт Жирар (1595-1632) первым выразил площади сферического треугольника и многоугольника через

их угловые избытки, в статье «О мере поверхности сферических треугольников и многоугольников,  открытой вновь», опубликованной в виде приложения к «Новому открытию вы алгебре».

Основные теоремы сферической тригонометрии были открыты учеными средневекового Востока. Соотношения, выражаемые

теоре­мой косинусов, были установлены сирийским математиком и астрономом IX века ал-Баттани, выходцем из семьи звездопоклонников - сабиев, у которых в течение многих веков сохранялись вавилонские астрономические традиции. Сферическая теорема сину­сов была открыта почти одновременно среднеазиатскими математи­ками и астрономами X века Ибн Ираком из Хорезма, Абу-л-Вафой из Хорасана и ал-Ходжанди из Ходжента. Соотношения, выражаемые двойственной теоремой косинусов, были установлены (с помощью полярного треугольника) в XIII веке работавшим в Азербайджане Насир-ад-дином ат - Туси, давшим первое полное изложение всей системы сферической тригонометрии.

Интересные и занимательные факты.

 

А вы знаете, что...

 

В географии (на глобусе) в качестве первого меридиана принято использовать Гринвичский меридиан, проходящий

через главный зал Гринвичской обсерватории (Гринвич – городской округ Лондона), он разделяет Землю на Восточное и Западное полушария, соответственно и долгота бывает восточной либо западной и измеряется от 0 до 180° в обе стороны от Гринвича. А вместо высоты точки в географии принято использовать широту, т.е. угол NOM = 90° – q, отсчитываемый от экватора. Т.к. экватор делит Землю на Северное и Южное полушария, то и широта бывает северной либо южной и изменяется от 0 до 90°.

Сайт "Элементы сферической геометрии" создан Анастасией Малыхиной при поддержке Wix.com

bottom of page